## Discrete Random Variables

## 4.2 <br> Expected Value: The Mean of a Discrete Random Variable

1. A pair of six-sided die is rolled four times. We record the number of sevens rolled over the four rolls. Determine if the results form a probability distribution. If so, find the expected value of the resulting probability distribution.

| $X$ | $P(X)$ |
| :--- | :--- |
| 0 | 0.482 |
| 1 | 0.386 |
| 2 | 0.116 |
| 3 | 0.015 |
| 4 | 0.001 |

2. Converting the above probability distribution into a game, players can risk $\$ 4$ to bet that a seven will not be rolled in four throws of the dice. If the player wins, he will be paid $\$ 7$ (a three-dollar profit), but if the player loses he/she loses his/her $\$ 4$ bet. What is the expected value for this game? Is this a smart bet to make in the long run?
3. The Florida Lotto requires you to pick six numbers from 1 to 53 . If you win by having all six of the lotto numbers on your ticket, you will receive $\$ 2,000,000$. If you lose, you will lose your dollar. What is the expected value on a Florida Lotto ticket? How do you interpret this number? (Note: If you use combinations, you will see that the probability of winning is $1 / 22,957,480$ )

## Answers:

1. It is a probability distribution since the probabilities add to one. The expected value is $E(X)=0.667$.
2. The probability he rolls at least one seven is $0.386+0.116+0.015+0.001$ $=0.518$. The probability he doesn't roll a seven is 0.482 . The expected value is then $E(X)=3(0.482)-4(0.518)=-0.626 \approx-\$ 0.63$ or a 63 cents loss for every bet made. This is not a good bet in the long run.
3. Here is how the probability table looks:

|  | X | $\mathrm{P}(\mathrm{X})$ | X |
| :--- | :--- | :--- | :--- |
| Win $\mathrm{P}(\mathrm{X})$ |  |  |  |
| Lose | $+1,999,999$ | 0.0000000436 | 0.0871175364 |
|  | -1 | 0.9999999564 | -0.9999999564 |

This means if we played lottery an infinite number of times (or at least a great many times) we would win sometimes, but not nearly enough to make up for the amount we would lose over that time. Our expected value is a 91 cents loss for every dollar spent on lotto. This is not a smart bet, but if a person doesn't go overboard, it can provide a cheap form of entertainment for people not morally opposed to gambling.

